接觸式讀票機(Contact-based)
原理:通過物理接觸(如金屬觸點)檢測選票上的導電標記(如特殊墨水填涂),形成電路導通來識別選擇。
特點:
識別速度快,但對選票材質(zhì)和標記墨水要求高。
易受污漬、折疊影響,應用場景較窄。
機械計數(shù)讀票機(Mechanical)
原理:通過機械結(jié)構(如齒輪、杠桿)統(tǒng)計選票數(shù)量,常見于早期手動投票機。
特點:
無需電力,成本極低,但效率低、易出錯,已逐漸被淘汰。
特征提取與判斷:識別選民的選擇意圖
根據(jù)選票標記類型(填涂、勾選、手寫符號等),算法采用不同的特征提取策略:
(1)填涂標記識別(常見場景)
面積占比法:計算填涂框內(nèi)黑色像素占比,超過閾值(如 30%-50%)則判定為有效選擇。
例:選民使用 2B 鉛筆填涂候選人 A 的方框,掃描后該區(qū)域黑色像素占比達 45%,算法判定為有效投票。
邊緣檢測法:通過 Canny 或 Sobel 算子檢測填涂區(qū)域的邊緣輪廓,與標準填涂形狀(如矩形、圓形)比對,排除不規(guī)則標記(如筆尖打滑形成的短線)。
濃度梯度分析:填涂越均勻的區(qū)域,灰度值分布越集中,算法可通過統(tǒng)計像素灰度方差來區(qū)分 “認真填涂” 與 “輕微觸碰”。
(2)勾選或手寫符號識別
形態(tài)學分析:通過膨脹、腐蝕等形態(tài)學運算,將勾選符號(√)或手寫標記(如 “○”)轉(zhuǎn)換為標準形狀,再與預設模板匹配。
方向特征提?。簩τ谛本€標記(如 “/”),計算像素分布的梯度方向,判斷是否符合 “勾選” 的典型角度(如 45° 或 135°)。
(3)異常標記檢測
多選判定:同一候選區(qū)域內(nèi)檢測到多個標記(如同時填涂兩個候選人框),或單票標記數(shù)超過規(guī)定(如總統(tǒng)選舉多選 1 人),則判定為無效票。
空白票識別:所有候選區(qū)域標記面積均低于閾值,判定為未投票。
4. 結(jié)果驗證與輸出:確保計數(shù)準確性
重復校驗:對關鍵標記區(qū)域進行多次掃描(如兩次獨立圖像采集),結(jié)果一致才確認有效。
人工復核接口:對算法判定存疑的選票(如填涂面積接近閾值、標記形狀模糊),生成圖像供選舉工作人員人工審核(如美國部分州要求對 “爭議票” 進行人工查驗)。
數(shù)據(jù)輸出:將識別結(jié)果轉(zhuǎn)換為結(jié)構化數(shù)據(jù)(如候選人 ID、得票數(shù)),同步至中央數(shù)據(jù)庫或打印紙質(zhì)統(tǒng)計表。
讀票機的準確性與可靠性依賴 “技術 + 制度 + 人工” 的三維防護:硬件通過冗余與校準確保物理信號采集穩(wěn)定,軟件借助算法校驗與防篡改設計提升邏輯判斷精度,制度流程則通過標準化操作與人工監(jiān)督彌補技術局限性。這種多層級保障體系在全球主要民主國家的選舉中已被驗證 —— 根據(jù)美國 EAC(選舉援助委員會)2022 年報告,符合認證標準的光學掃描讀票機平均錯誤率<0.003%,遠低于人工計票的 1.5% 錯誤率。未來,隨著量子加密技術與聯(lián)邦學習在選舉系統(tǒng)中的應用,讀票機的可靠性還將進一步提升,同時保持對選民操作習慣的包容性。