圖像預(yù)處理:優(yōu)化原始掃描數(shù)據(jù)
灰度化處理:將彩色圖像轉(zhuǎn)換為灰度圖,突出標(biāo)記與背景的亮度差異(如鉛筆填涂區(qū)域灰度值較低)。
二值化轉(zhuǎn)換:通過設(shè)定閾值(如灰度值低于 128 視為標(biāo)記),將圖像轉(zhuǎn)化為黑白二值圖,簡化后續(xù)計算(例:填涂框內(nèi)黑色像素占比≥30% 視為有效標(biāo)記)。
噪聲過濾:利用中值濾波、高斯濾波等算法,消除紙張污漬、折疊陰影等干擾(如去除面積小于 10 像素的孤立黑點)。
幾何校正:通過檢測選票邊緣的定位標(biāo)記(如 registration marks),校正因傳送歪斜導(dǎo)致的圖像旋轉(zhuǎn)或縮放,確保標(biāo)記位置與預(yù)設(shè)模板對齊。
特征提取與判斷:識別選民的選擇意圖
根據(jù)選票標(biāo)記類型(填涂、勾選、手寫符號等),算法采用不同的特征提取策略:
(1)填涂標(biāo)記識別(常見場景)
面積占比法:計算填涂框內(nèi)黑色像素占比,超過閾值(如 30%-50%)則判定為有效選擇。
例:選民使用 2B 鉛筆填涂候選人 A 的方框,掃描后該區(qū)域黑色像素占比達 45%,算法判定為有效投票。
邊緣檢測法:通過 Canny 或 Sobel 算子檢測填涂區(qū)域的邊緣輪廓,與標(biāo)準(zhǔn)填涂形狀(如矩形、圓形)比對,排除不規(guī)則標(biāo)記(如筆尖打滑形成的短線)。
濃度梯度分析:填涂越均勻的區(qū)域,灰度值分布越集中,算法可通過統(tǒng)計像素灰度方差來區(qū)分 “認真填涂” 與 “輕微觸碰”。
(2)勾選或手寫符號識別
形態(tài)學(xué)分析:通過膨脹、腐蝕等形態(tài)學(xué)運算,將勾選符號(√)或手寫標(biāo)記(如 “○”)轉(zhuǎn)換為標(biāo)準(zhǔn)形狀,再與預(yù)設(shè)模板匹配。
方向特征提取:對于斜線標(biāo)記(如 “/”),計算像素分布的梯度方向,判斷是否符合 “勾選” 的典型角度(如 45° 或 135°)。
(3)異常標(biāo)記檢測
多選判定:同一候選區(qū)域內(nèi)檢測到多個標(biāo)記(如同時填涂兩個候選人框),或單票標(biāo)記數(shù)超過規(guī)定(如總統(tǒng)選舉多選 1 人),則判定為無效票。
空白票識別:所有候選區(qū)域標(biāo)記面積均低于閾值,判定為未投票。
4. 結(jié)果驗證與輸出:確保計數(shù)準(zhǔn)確性
重復(fù)校驗:對關(guān)鍵標(biāo)記區(qū)域進行多次掃描(如兩次獨立圖像采集),結(jié)果一致才確認有效。
人工復(fù)核接口:對算法判定存疑的選票(如填涂面積接近閾值、標(biāo)記形狀模糊),生成圖像供選舉工作人員人工審核(如美國部分州要求對 “爭議票” 進行人工查驗)。
數(shù)據(jù)輸出:將識別結(jié)果轉(zhuǎn)換為結(jié)構(gòu)化數(shù)據(jù)(如候選人 ID、得票數(shù)),同步至中央數(shù)據(jù)庫或打印紙質(zhì)統(tǒng)計表。
本產(chǎn)品適用于黨的組織部門、政府人事部門、較大型機關(guān)企事業(yè)單位、大專院校,開展對在職干部的推薦選拔、量化測評、對單位或部門的工作評議用。另外,本產(chǎn)品還可作為省級組織部門年度評議表和考核表的專用干部考評機用。
系統(tǒng)構(gòu)成:
1、配接主機四核2G以上、筆記本或臺式機操作系統(tǒng) Windows xp、windos7、Windows 10等。
2、高速文檔掃描儀1臺
3、機讀選票:可以是紅、藍、綠、黃等底色或普通打印機紙。
4、現(xiàn)場選票激光打印機。
南昊(北京)科技有限公司面向各地、各級黨委、政府、人大、政協(xié)、工會、共青團、婦聯(lián)、各類型協(xié)會;面向村鎮(zhèn)、街道、社區(qū)及有選舉、評選先進、民主測評需要的單位,向他們提供專業(yè)的選舉電子計票系統(tǒng)、選舉電子計票技術(shù)咨詢、選舉電子計票解決方案、選舉現(xiàn)場電子計票服務(wù)等。歡迎新老客戶朋友咨詢。