圖像預處理:優(yōu)化原始掃描數(shù)據(jù)
灰度化處理:將彩色圖像轉換為灰度圖,突出標記與背景的亮度差異(如鉛筆填涂區(qū)域灰度值較低)。
二值化轉換:通過設定閾值(如灰度值低于 128 視為標記),將圖像轉化為黑白二值圖,簡化后續(xù)計算(例:填涂框內(nèi)黑色像素占比≥30% 視為有效標記)。
噪聲過濾:利用中值濾波、高斯濾波等算法,消除紙張污漬、折疊陰影等干擾(如去除面積小于 10 像素的孤立黑點)。
幾何校正:通過檢測選票邊緣的定位標記(如 registration marks),校正因傳送歪斜導致的圖像旋轉或縮放,確保標記位置與預設模板對齊。
特征提取與判斷:識別選民的選擇意圖
根據(jù)選票標記類型(填涂、勾選、手寫符號等),算法采用不同的特征提取策略:
(1)填涂標記識別(常見場景)
面積占比法:計算填涂框內(nèi)黑色像素占比,超過閾值(如 30%-50%)則判定為有效選擇。
例:選民使用 2B 鉛筆填涂候選人 A 的方框,掃描后該區(qū)域黑色像素占比達 45%,算法判定為有效投票。
邊緣檢測法:通過 Canny 或 Sobel 算子檢測填涂區(qū)域的邊緣輪廓,與標準填涂形狀(如矩形、圓形)比對,排除不規(guī)則標記(如筆尖打滑形成的短線)。
濃度梯度分析:填涂越均勻的區(qū)域,灰度值分布越集中,算法可通過統(tǒng)計像素灰度方差來區(qū)分 “認真填涂” 與 “輕微觸碰”。
(2)勾選或手寫符號識別
形態(tài)學分析:通過膨脹、腐蝕等形態(tài)學運算,將勾選符號(√)或手寫標記(如 “○”)轉換為標準形狀,再與預設模板匹配。
方向特征提?。簩τ谛本€標記(如 “/”),計算像素分布的梯度方向,判斷是否符合 “勾選” 的典型角度(如 45° 或 135°)。
(3)異常標記檢測
多選判定:同一候選區(qū)域內(nèi)檢測到多個標記(如同時填涂兩個候選人框),或單票標記數(shù)超過規(guī)定(如總統(tǒng)選舉多選 1 人),則判定為無效票。
空白票識別:所有候選區(qū)域標記面積均低于閾值,判定為未投票。
4. 結果驗證與輸出:確保計數(shù)準確性
重復校驗:對關鍵標記區(qū)域進行多次掃描(如兩次獨立圖像采集),結果一致才確認有效。
人工復核接口:對算法判定存疑的選票(如填涂面積接近閾值、標記形狀模糊),生成圖像供選舉工作人員人工審核(如美國部分州要求對 “爭議票” 進行人工查驗)。
數(shù)據(jù)輸出:將識別結果轉換為結構化數(shù)據(jù)(如候選人 ID、得票數(shù)),同步至中央數(shù)據(jù)庫或打印紙質統(tǒng)計表。
選票預處理:通過紅外光源掃描選票,生成灰度圖像,同時檢測選票邊緣的定位孔(registration holes)以校準位置。
區(qū)域劃分:根據(jù)選票模板,將圖像劃分為總統(tǒng)候選人區(qū)、參議員區(qū)、公投議題區(qū)等獨立 ROI。
填涂分析:對每個候選人對應的橢圓填涂框,計算黑色像素占比,超過 35% 則判定為有效投票。
異常標記處理:若同一總統(tǒng)候選人區(qū)檢測到 2 個及以上有效填涂,系統(tǒng)標記為 “多選票”(overvote),該區(qū)域投票無效。
數(shù)據(jù)同步:每臺讀票機實時將計數(shù)結果通過加密網(wǎng)絡傳輸至選區(qū)服務器,同時保存原始圖像供事后審計(如 2020 年佐治亞州重新計票時,人工核對了掃描圖像與紙質選票)。
系統(tǒng)構成:
1、配接主機四核2G以上、筆記本或臺式機操作系統(tǒng) Windows xp、windos7、Windows 10等。
2、高速文檔掃描儀1臺
3、機讀選票:可以是紅、藍、綠、黃等底色或普通打印機紙。
4、現(xiàn)場選票激光打印機。
南昊(北京)科技有限公司面向各地、各級黨委、政府、人大、政協(xié)、工會、共青團、婦聯(lián)、各類型協(xié)會;面向村鎮(zhèn)、街道、社區(qū)及有選舉、評選先進、民主測評需要的單位,向他們提供專業(yè)的選舉電子計票系統(tǒng)、選舉電子計票技術咨詢、選舉電子計票解決方案、選舉現(xiàn)場電子計票服務等。歡迎新老客戶朋友咨詢。