光學(xué)掃描式讀票機(jī)(Optical Scan)
原理:通過光學(xué)傳感器掃描選票上的標(biāo)記(如鉛筆填涂、墨水筆勾選),利用圖像識別技術(shù)判斷選民選擇。
特點:
成本較低,兼容紙質(zhì)選票,適合大規(guī)模選舉。
需選票格式標(biāo)準(zhǔn)化(如固定位置的填涂框)。
應(yīng)用場景:美國大選、印度議會選舉等大規(guī)模紙質(zhì)選票選舉。
電子觸摸屏讀票機(jī)(Electronic Touchscreen)
原理:選民直接在觸摸屏上選擇候選人,機(jī)器實時記錄數(shù)據(jù)并生成電子選票。
特點:
操作直觀,減少人工誤差,但依賴電力和系統(tǒng)穩(wěn)定性。
存在黑客攻擊或系統(tǒng)故障風(fēng)險,需配合紙質(zhì)備份(如 “選民驗證紙質(zhì)審計軌跡” VVPAT)。
應(yīng)用場景:美國部分州、巴西等電子化選舉場景。
標(biāo)記區(qū)域定位:鎖定選票上的有效選擇區(qū)
模板匹配:讀票機(jī)內(nèi)置選票格式模板,通過檢測預(yù)設(shè)的定位點(如角點、條形碼)確定候選人選項框、政黨符號等區(qū)域的坐標(biāo)范圍。
興趣區(qū)域(ROI)劃分:將選票圖像分割為多個獨立 ROI(如每個候選人對應(yīng)一個矩形區(qū)域),減少全局分析的計算量。
示例:美國大選使用的 “蝶形選票”(Butterfly Ballot)中,讀票機(jī)通過模板定位左右兩列候選人姓名旁的填涂框,避免因選民誤填相鄰區(qū)域?qū)е抡`判。
軟件算法:從識別精度到防篡改機(jī)制
1. 多重校驗算法架構(gòu)
重復(fù)掃描比對:對每張選票進(jìn)行至少 2 次獨立掃描(間隔 50ms),比對兩次圖像的像素差異,若標(biāo)記區(qū)域灰度值偏差超過 15%,則觸發(fā)第三次掃描并人工介入(如日本選舉法要求對爭議票進(jìn)行三次掃描)。
多特征融合判斷:結(jié)合填涂面積、邊緣輪廓、灰度梯度等多維度特征,采用加權(quán)投票機(jī)制(如面積占比權(quán)重 40%+ 邊緣匹配度權(quán)重 30%+ 濃度均勻性權(quán)重 30%),避免單一特征誤判(例:某區(qū)域面積達(dá)標(biāo)但邊緣鋸齒狀,可能被判為 “無意涂抹”)。
機(jī)器學(xué)習(xí)模型迭代:利用歷史選舉的有效 / 無效票數(shù)據(jù)(如美國 EAC 公開的選票數(shù)據(jù)集)訓(xùn)練 CNN 模型,對非標(biāo)準(zhǔn)標(biāo)記(如超框填涂、輕描標(biāo)記)的識別準(zhǔn)確率提升至 99.2% 以上。
2. 防篡改與數(shù)據(jù)完整性保護(hù)
哈希值校驗:對每張選票的掃描圖像生成哈希值(如 SHA-256),存儲于區(qū)塊鏈節(jié)點或加密數(shù)據(jù)庫,任何圖像修改都會導(dǎo)致哈希值變更,可實時檢測數(shù)據(jù)篡改(如德國部分州采用區(qū)塊鏈存證選票圖像)。
軟件版本控制:讀票機(jī)操作系統(tǒng)與識別算法采用簽名固件更新機(jī)制,僅允許通過官方渠道推送的版本(附帶數(shù)字證書)安裝,防止惡意程序植入(如 2018 年美國佛羅里達(dá)州選舉前,對所有讀票機(jī)進(jìn)行固件哈希值比對,攔截 3 臺異常設(shè)備)。