選票讀票機(Vote Counting Machine)是用于自動化處理選舉選票、快速統(tǒng)計投票結(jié)果的電子設(shè)備,核心功能包括:
選票識別:讀取選票上的標記(如填涂、手寫符號、條形碼等),判斷選民選擇的候選人或選項。
數(shù)據(jù)統(tǒng)計:實時匯總選票數(shù)據(jù),生成各候選人得票率、有效票 / 無效票數(shù)量等統(tǒng)計結(jié)果。
數(shù)據(jù)存儲與導(dǎo)出:保存原始選票數(shù)據(jù)和統(tǒng)計結(jié)果,支持導(dǎo)出至選舉管理系統(tǒng)或打印紙質(zhì)報告。
異常檢測:識別重復(fù)投票、空白票、多選票等異常情況,并標記或報錯。
選票讀票機是現(xiàn)代選舉數(shù)字化的核心工具,其技術(shù)演進始終圍繞 “效率、準確、” 三大目標。盡管存在技術(shù)爭議,但通過標準化流程、多重審計機制和技術(shù)迭代,讀票機正逐步成為保障選舉公正的重要支撐。在應(yīng)用中,需結(jié)合地區(qū)電子化水平、選民習(xí)慣及需求,選擇適配的技術(shù)方案,同時強化人工監(jiān)督與法律規(guī)范,確保技術(shù)為民主選舉賦能。
標記區(qū)域定位:鎖定選票上的有效選擇區(qū)
模板匹配:讀票機內(nèi)置選票格式模板,通過檢測預(yù)設(shè)的定位點(如角點、條形碼)確定候選人選項框、政黨符號等區(qū)域的坐標范圍。
興趣區(qū)域(ROI)劃分:將選票圖像分割為多個獨立 ROI(如每個候選人對應(yīng)一個矩形區(qū)域),減少全局分析的計算量。
示例:美國大選使用的 “蝶形選票”(Butterfly Ballot)中,讀票機通過模板定位左右兩列候選人姓名旁的填涂框,避免因選民誤填相鄰區(qū)域?qū)е抡`判。
特征提取與判斷:識別選民的選擇意圖
根據(jù)選票標記類型(填涂、勾選、手寫符號等),算法采用不同的特征提取策略:
(1)填涂標記識別(常見場景)
面積占比法:計算填涂框內(nèi)黑色像素占比,超過閾值(如 30%-50%)則判定為有效選擇。
例:選民使用 2B 鉛筆填涂候選人 A 的方框,掃描后該區(qū)域黑色像素占比達 45%,算法判定為有效投票。
邊緣檢測法:通過 Canny 或 Sobel 算子檢測填涂區(qū)域的邊緣輪廓,與標準填涂形狀(如矩形、圓形)比對,排除不規(guī)則標記(如筆尖打滑形成的短線)。
濃度梯度分析:填涂越均勻的區(qū)域,灰度值分布越集中,算法可通過統(tǒng)計像素灰度方差來區(qū)分 “認真填涂” 與 “輕微觸碰”。
(2)勾選或手寫符號識別
形態(tài)學(xué)分析:通過膨脹、腐蝕等形態(tài)學(xué)運算,將勾選符號(√)或手寫標記(如 “○”)轉(zhuǎn)換為標準形狀,再與預(yù)設(shè)模板匹配。
方向特征提?。簩τ谛本€標記(如 “/”),計算像素分布的梯度方向,判斷是否符合 “勾選” 的典型角度(如 45° 或 135°)。
(3)異常標記檢測
多選判定:同一候選區(qū)域內(nèi)檢測到多個標記(如同時填涂兩個候選人框),或單票標記數(shù)超過規(guī)定(如總統(tǒng)選舉多選 1 人),則判定為無效票。
空白票識別:所有候選區(qū)域標記面積均低于閾值,判定為未投票。
4. 結(jié)果驗證與輸出:確保計數(shù)準確性
重復(fù)校驗:對關(guān)鍵標記區(qū)域進行多次掃描(如兩次獨立圖像采集),結(jié)果一致才確認有效。
人工復(fù)核接口:對算法判定存疑的選票(如填涂面積接近閾值、標記形狀模糊),生成圖像供選舉工作人員人工審核(如美國部分州要求對 “爭議票” 進行人工查驗)。
數(shù)據(jù)輸出:將識別結(jié)果轉(zhuǎn)換為結(jié)構(gòu)化數(shù)據(jù)(如候選人 ID、得票數(shù)),同步至中央數(shù)據(jù)庫或打印紙質(zhì)統(tǒng)計表。