條形碼 / 二維碼讀票機(jī)
原理:選民通過填寫或掃描條形碼 / 二維碼選票,機(jī)器讀取編碼后解析投票信息。
特點(diǎn):
數(shù)據(jù)精度高,可存儲更多信息(如選區(qū)、候選人編號)。
需提前印制帶編碼的選票,適合電子化程度較高的選舉。
特征提取與判斷:識別選民的選擇意圖
根據(jù)選票標(biāo)記類型(填涂、勾選、手寫符號等),算法采用不同的特征提取策略:
(1)填涂標(biāo)記識別(常見場景)
面積占比法:計(jì)算填涂框內(nèi)黑色像素占比,超過閾值(如 30%-50%)則判定為有效選擇。
例:選民使用 2B 鉛筆填涂候選人 A 的方框,掃描后該區(qū)域黑色像素占比達(dá) 45%,算法判定為有效投票。
邊緣檢測法:通過 Canny 或 Sobel 算子檢測填涂區(qū)域的邊緣輪廓,與標(biāo)準(zhǔn)填涂形狀(如矩形、圓形)比對,排除不規(guī)則標(biāo)記(如筆尖打滑形成的短線)。
濃度梯度分析:填涂越均勻的區(qū)域,灰度值分布越集中,算法可通過統(tǒng)計(jì)像素灰度方差來區(qū)分 “認(rèn)真填涂” 與 “輕微觸碰”。
(2)勾選或手寫符號識別
形態(tài)學(xué)分析:通過膨脹、腐蝕等形態(tài)學(xué)運(yùn)算,將勾選符號(√)或手寫標(biāo)記(如 “○”)轉(zhuǎn)換為標(biāo)準(zhǔn)形狀,再與預(yù)設(shè)模板匹配。
方向特征提?。簩τ谛本€標(biāo)記(如 “/”),計(jì)算像素分布的梯度方向,判斷是否符合 “勾選” 的典型角度(如 45° 或 135°)。
(3)異常標(biāo)記檢測
多選判定:同一候選區(qū)域內(nèi)檢測到多個標(biāo)記(如同時填涂兩個候選人框),或單票標(biāo)記數(shù)超過規(guī)定(如總統(tǒng)選舉多選 1 人),則判定為無效票。
空白票識別:所有候選區(qū)域標(biāo)記面積均低于閾值,判定為未投票。
4. 結(jié)果驗(yàn)證與輸出:確保計(jì)數(shù)準(zhǔn)確性
重復(fù)校驗(yàn):對關(guān)鍵標(biāo)記區(qū)域進(jìn)行多次掃描(如兩次獨(dú)立圖像采集),結(jié)果一致才確認(rèn)有效。
人工復(fù)核接口:對算法判定存疑的選票(如填涂面積接近閾值、標(biāo)記形狀模糊),生成圖像供選舉工作人員人工審核(如美國部分州要求對 “爭議票” 進(jìn)行人工查驗(yàn))。
數(shù)據(jù)輸出:將識別結(jié)果轉(zhuǎn)換為結(jié)構(gòu)化數(shù)據(jù)(如候選人 ID、得票數(shù)),同步至中央數(shù)據(jù)庫或打印紙質(zhì)統(tǒng)計(jì)表。
選票預(yù)處理:通過紅外光源掃描選票,生成灰度圖像,同時檢測選票邊緣的定位孔(registration holes)以校準(zhǔn)位置。
區(qū)域劃分:根據(jù)選票模板,將圖像劃分為總統(tǒng)候選人區(qū)、參議員區(qū)、公投議題區(qū)等獨(dú)立 ROI。
填涂分析:對每個候選人對應(yīng)的橢圓填涂框,計(jì)算黑色像素占比,超過 35% 則判定為有效投票。
異常標(biāo)記處理:若同一總統(tǒng)候選人區(qū)檢測到 2 個及以上有效填涂,系統(tǒng)標(biāo)記為 “多選票”(overvote),該區(qū)域投票無效。
數(shù)據(jù)同步:每臺讀票機(jī)實(shí)時將計(jì)數(shù)結(jié)果通過加密網(wǎng)絡(luò)傳輸至選區(qū)服務(wù)器,同時保存原始圖像供事后審計(jì)(如 2020 年佐治亞州重新計(jì)票時,人工核對了掃描圖像與紙質(zhì)選票)。
本產(chǎn)品適用于黨的組織部門、政府人事部門、較大型機(jī)關(guān)企事業(yè)單位、大專院校,開展對在職干部的推薦選拔、量化測評、對單位或部門的工作評議用。另外,本產(chǎn)品還可作為省級組織部門年度評議表和考核表的專用干部考評機(jī)用。