圖像預處理:優(yōu)化原始掃描數(shù)據(jù)
灰度化處理:將彩色圖像轉換為灰度圖,突出標記與背景的亮度差異(如鉛筆填涂區(qū)域灰度值較低)。
二值化轉換:通過設定閾值(如灰度值低于 128 視為標記),將圖像轉化為黑白二值圖,簡化后續(xù)計算(例:填涂框內黑色像素占比≥30% 視為有效標記)。
噪聲過濾:利用中值濾波、高斯濾波等算法,消除紙張污漬、折疊陰影等干擾(如去除面積小于 10 像素的孤立黑點)。
幾何校正:通過檢測選票邊緣的定位標記(如 registration marks),校正因傳送歪斜導致的圖像旋轉或縮放,確保標記位置與預設模板對齊。
典型技術挑戰(zhàn)與解決方案
挑戰(zhàn)場景 技術應對措施
不同墨水的反光差異 - 采用多光譜光源(如紅光 + 紅外光),針對不同墨水(鉛筆、藍黑墨水、熒光筆)調整檢測波長。
- 機器學習模型訓練:用歷史數(shù)據(jù)訓練分類器,區(qū)分不同墨水材質的標記。
選票折疊或污漬干擾 - 圖像修復算法:通過插值法填充折疊造成的圖像缺失區(qū)域。
- 污漬識別模型:用深度學習區(qū)分 “人為標記” 與 “自然污漬”(如咖啡漬形狀通常更不規(guī)則)。
非標準填涂(如超框、輕描) - 彈性閾值設定:根據(jù)填涂中心位置,允許標記超出框線一定范圍(如框線外 5 像素內仍算有效)。
- 概率化判定:結合填涂位置、面積、濃度等多維度特征,給出 “有效概率”(如 80% 概率為有效標記),而非非黑即白的判斷。
選票格式變更(如新版選票) - 動態(tài)模板配置:允許管理員導入新選票模板,自動更新 ROI 區(qū)域坐標與標記規(guī)則,無需修改底層算法。
系統(tǒng)介紹:
投票選舉系統(tǒng)(掃描儀版)與電子投票箱計票原理一致,具有更輕便、靈活的特點。適用于小型選舉會議、分團選舉或其他投票地點不集中的場景。
民主選舉,特別是無記名投票,一般要具有機密性、性、可靠性、準確性、實用性和易操作性。
在企事業(yè)單位中,民主選舉需要處理大量的數(shù)據(jù)。如果用人工去處理,不但費時費力,而且難以做好真實、公平,這些工作的成果也缺乏說服力。
如果采用高速掃描儀智能識別來讀卡,然后配合能對數(shù)據(jù)作分析處理的投票選舉統(tǒng)計軟件,組成民主投票選舉系統(tǒng),不僅能大大降低統(tǒng)計得票數(shù)和有效票據(jù)的工作量,省時省力、快速準確,還能夠消除投票人的思想顧慮,和減少其它不必要的人為因素干擾,使選舉符合公平、公正、公開的標準。
采用高速掃描儀讀選票的方式?,F(xiàn)場聯(lián)機閱讀,多種選票混讀。使用方便、識別準確,準確率,無誤差。閱讀、統(tǒng)計速度快。 在軟件讀卡過程中,可以根據(jù)用戶的設定設置為多選無效、不選棄票等選項,自動統(tǒng)計總票數(shù)多少、有效票多少??筛鶕?jù)用戶需求定義涂卡圖像的識別如“√”、“O”。
爭議票處理機制
可視化復核界面:讀票機軟件提供選票圖像放大、灰度值可視化工具(如用熱力圖顯示填涂濃度),工作人員可手動標記 “有效”“無效” 或 “待確認”(如加拿大聯(lián)邦選舉中,人工復核團隊通過專用軟件處理爭議票)。
多輪仲裁流程:對人工復核仍存爭議的選票(如填涂面積剛好卡在閾值邊緣),由選區(qū)選舉委員會 3 名成員投票決定,需至少 2 票同意方可判定有效性。