多種類回收技術(shù)如濕法冶金、火法冶金和物理分離法,提供了靈活的回收方式以適應(yīng)不同的廢物類型和規(guī)模需求。濕法冶金回收中,酸浸法通過使用鹽酸或硫酸來溶解ITO廢料,使得銦以In3?的形式進(jìn)入溶液。隨后,可以利用溶劑萃取、置換反應(yīng)(例如,使用鋅粉進(jìn)行置換)或電解法來進(jìn)一步回收銦。生物浸出法利用特定的微生物,如硫氧化,來選擇性溶解銦。雖然這種方法環(huán)保,但目前其效率相對(duì)較低,仍處在研究階段。火法冶金回收中,高溫熔煉將含銦廢料與還原劑(例如焦炭)一同進(jìn)行高溫熔煉。在熔煉過程中,銦會(huì)富集在煙塵或熔渣中,隨后需要進(jìn)一步的二次處理來進(jìn)行提純。這種方法適用于大規(guī)模的回收操作,但能耗相對(duì)較高。
再生銦的應(yīng)用廣泛,包括重新制備ITO靶材,以及在半導(dǎo)體、合金等領(lǐng)域的使用。從經(jīng)濟(jì)角度看,回收1噸銦可以減少大約50噸原礦的開采,同時(shí),回收銦的成本相比原生銦要低30%~50%。綜上所述,ITO銦的回收不僅對(duì)環(huán)境友好,還能帶來顯著的經(jīng)濟(jì)效益。隨著科技的不斷進(jìn)步和電子廢棄物數(shù)量的不斷增加,且環(huán)保的回收方案將成為稀散金屬可持續(xù)利用的關(guān)鍵所在。
銦的回收方法主要包括物理法、化學(xué)法和生物法等。物理法主要是通過重力、磁力、浮選等方法將銦與其他雜質(zhì)分離;化學(xué)法主要是通過浸出、萃取、沉淀等方法將銦從礦石或廢料中提取出來;生物法主要是利用微生物對(duì)銦的吸附、轉(zhuǎn)化等作用將銦從溶液中去除。目前,化學(xué)法是銦回收的主要方法。
銦的競(jìng)爭(zhēng)格局主要體現(xiàn)在資源競(jìng)爭(zhēng)和科技創(chuàng)新競(jìng)爭(zhēng)兩個(gè)方面。在資源競(jìng)爭(zhēng)方面,中國(guó)、加拿大和韓國(guó)是全球銦生產(chǎn)的主要國(guó)家,其中中國(guó)的銦儲(chǔ)量和產(chǎn)量均居世界首位。在科技創(chuàng)新競(jìng)爭(zhēng)方面,銦的回收利用技術(shù)不斷創(chuàng)新,如生物法回收銦技術(shù)的出現(xiàn),為銦的回收利用提供了新的途徑。