在分析之前,我們先看一下ASIC(Application Specific Integrated Circuit),中文全稱是“專用集成電路”。這里特別強調(diào)“專用”,“專用”意味著針對單一項目來說會更加有競爭力。相對比,GPU(顯卡)是通用計算處理芯片,所以在單一項目上來說“專用”肯定比“通用”更有競爭力。
●在算法過程中頻繁的數(shù)據(jù)混洗使得NTT難以在計算集群中分布,無法并行計算,并且由于需要從大型數(shù)據(jù)集中加載和卸載數(shù)據(jù),在硬件上運行時需要大量帶寬。即使硬件操作很快,這可能也會導致速度變慢。例如,如果硬件芯片的內(nèi)存為16GB或更少,那么在100GB的數(shù)據(jù)集上運行NTT將需要通過網(wǎng)絡加載和卸載數(shù)據(jù),這可能會大大降低操作速度。
為了打破英偉達一家獨大的局面,前任全球芯片老大英特爾和多年老對手AMD對標CUDA都分別推出了OneAPI和ROCm,Linux基金會更是聯(lián)合英特爾、谷歌、高通、ARM、三星等公司聯(lián)合成立了民間號稱“反CUDA聯(lián)盟”的UXL基金會,以開發(fā)全新的開源軟件套件,讓AI開發(fā)者能夠在基金會成員的任何芯片上進行編程,試圖讓其取代CUDA,成為AI開發(fā)者的開發(fā)平臺。
早在2021年,英偉達就曾公開表示過“禁止使用轉(zhuǎn)換層在其他硬件平臺上運行基于CUDA的軟件”,2024年3月,英偉達更是將其升級為“CUDA禁令”,直接添加在了CUDA的終用戶許可協(xié)議中,已禁止用轉(zhuǎn)譯層在其他GPU上運行CUDA軟件