從算法的角度上來(lái)看,Aleo屬于零知識(shí)證明(ZKP)賽道項(xiàng)目,復(fù)雜度是比大餅和以太坊算法都要復(fù)雜的。算法的核心計(jì)算我們之前也提過(guò)主要是MSM+NTT/FFT的計(jì)算,還會(huì)包含一些Hash運(yùn)算。這些計(jì)算主要目的是為了生成零知識(shí)證明,而生成證明的速度直接會(huì)影響生態(tài)的體驗(yàn)。
綜上來(lái)看,內(nèi)存和帶寬是限制證明生成的主要瓶頸。對(duì)于顯卡來(lái)說(shuō),這里的內(nèi)存指的是顯存,并不是主板上的內(nèi)存,主板上的內(nèi)存主要是參與CPU的計(jì)算。當(dāng)然目前有些芯片技術(shù)可以打通主板上的內(nèi)存和顯存,讓內(nèi)存為顯存計(jì)算來(lái)用。
按照官方的設(shè)想和規(guī)劃未來(lái)在Aleo上每天的交易量都是上億美金的規(guī)模,在這樣大數(shù)據(jù)量的要求下,每時(shí)每刻都有證明需要被委托出去在極短的時(shí)間內(nèi)完成證明的生產(chǎn),不可能指望顯卡能解決這個(gè)問(wèn)題。就像AI大模型訓(xùn)練一樣,早期數(shù)據(jù)量和參數(shù)少的情況下可以用消費(fèi)級(jí)顯卡,但是現(xiàn)在更多的都是為AI訓(xùn)練設(shè)計(jì)的專用芯片和機(jī)器。
芯片的硬件指的是運(yùn)行指令的物理平臺(tái),包括處理器、內(nèi)存、存儲(chǔ)設(shè)備等等。芯片數(shù)據(jù)中常出現(xiàn)的“晶體管數(shù)量”、“7nm制程”、“存儲(chǔ)”等,往往指的就是硬件參數(shù)。
軟件則包括固件、驅(qū)動(dòng)程序、操作系統(tǒng)、應(yīng)用程序、算子、編譯器和開發(fā)工具、模型優(yōu)化和部署工具、應(yīng)用生態(tài)等等。這些軟件指導(dǎo)硬件如何響應(yīng)用戶指令、處理數(shù)據(jù)和任務(wù),同時(shí)通過(guò)特定的算法和策略優(yōu)化硬件資源的使用。芯片數(shù)據(jù)中常出現(xiàn)的“x86指令集”、“深度學(xué)習(xí)算子”、“CUDA平臺(tái)”等,往往指的就是芯片軟件。