硬件層面,也就是所謂的硬件加速, CPU、GPU、FPGA、ASIC。CPU與GPU相比在大數(shù)據(jù)多任務(wù)處理上,肯定GPU更占優(yōu)勢。FPGA與GPU相比,在兼顧了靈活性的基礎(chǔ)上,無論是計(jì)算能力和功耗性能上都要更強(qiáng),缺點(diǎn)是性價比太低。ASIC是的,其他的硬件形態(tài)都是無法比擬的。
證明生成的過程中,約有60%的時間花在MSM上,其余時間由NTT/FTT主導(dǎo)。MSM和NTT都存在性能挑戰(zhàn),通常的解決辦法:
●MSM可以在多線程上執(zhí)行,從而支持并行處理。然而,當(dāng)處理大型數(shù)據(jù)向量時,例如6700萬個參數(shù),乘法運(yùn)算可能仍然很慢,并且需要大量的內(nèi)存資源。此外,MSM存在可擴(kuò)展性方面的挑戰(zhàn),即使在廣泛并行化的情況下也可能保持緩慢。
綜上來看,內(nèi)存和帶寬是限制證明生成的主要瓶頸。對于顯卡來說,這里的內(nèi)存指的是顯存,并不是主板上的內(nèi)存,主板上的內(nèi)存主要是參與CPU的計(jì)算。當(dāng)然目前有些芯片技術(shù)可以打通主板上的內(nèi)存和顯存,讓內(nèi)存為顯存計(jì)算來用。
按照官方的設(shè)想和規(guī)劃未來在Aleo上每天的交易量都是上億美金的規(guī)模,在這樣大數(shù)據(jù)量的要求下,每時每刻都有證明需要被委托出去在極短的時間內(nèi)完成證明的生產(chǎn),不可能指望顯卡能解決這個問題。就像AI大模型訓(xùn)練一樣,早期數(shù)據(jù)量和參數(shù)少的情況下可以用消費(fèi)級顯卡,但是現(xiàn)在更多的都是為AI訓(xùn)練設(shè)計(jì)的專用芯片和機(jī)器。