硬件層面,也就是所謂的硬件加速, CPU、GPU、FPGA、ASIC。CPU與GPU相比在大數(shù)據(jù)多任務處理上,肯定GPU更占優(yōu)勢。FPGA與GPU相比,在兼顧了靈活性的基礎上,無論是計算能力和功耗性能上都要更強,缺點是性價比太低。ASIC是的,其他的硬件形態(tài)都是無法比擬的。
按照官方的設想和規(guī)劃未來在Aleo上每天的交易量都是上億美金的規(guī)模,在這樣大數(shù)據(jù)量的要求下,每時每刻都有證明需要被委托出去在極短的時間內(nèi)完成證明的生產(chǎn),不可能指望顯卡能解決這個問題。就像AI大模型訓練一樣,早期數(shù)據(jù)量和參數(shù)少的情況下可以用消費級顯卡,但是現(xiàn)在更多的都是為AI訓練設計的專用芯片和機器。
為什么以太坊或者門羅是抵制ASIC的?看看大餅就知道了,主要是比較低成本的ASIC讓以太坊社區(qū)預測到了ASIC機器未來可能占領(lǐng)以太坊網(wǎng)絡,而以太坊網(wǎng)絡開始的共識是PoW,和大餅一樣。
既然共識是POS的,自然也就不怕ASIC控制網(wǎng)絡,壓根也控制不了,也就不存在分叉的問題,而且從算法和定位的角度上來說,ASIC也是必然需求。Aleo芯片機,Aleo-ASIC,zktaoma或者maxsayss