硬件層面,也就是所謂的硬件加速, CPU、GPU、FPGA、ASIC。CPU與GPU相比在大數(shù)據(jù)多任務(wù)處理上,肯定GPU更占優(yōu)勢。FPGA與GPU相比,在兼顧了靈活性的基礎(chǔ)上,無論是計算能力和功耗性能上都要更強,缺點是性價比太低。ASIC是的,其他的硬件形態(tài)都是無法比擬的。
證明生成的過程中,約有60%的時間花在MSM上,其余時間由NTT/FTT主導(dǎo)。MSM和NTT都存在性能挑戰(zhàn),通常的解決辦法:
●MSM可以在多線程上執(zhí)行,從而支持并行處理。然而,當(dāng)處理大型數(shù)據(jù)向量時,例如6700萬個參數(shù),乘法運算可能仍然很慢,并且需要大量的內(nèi)存資源。此外,MSM存在可擴展性方面的挑戰(zhàn),即使在廣泛并行化的情況下也可能保持緩慢。
目前零知識證明(ZKP)應(yīng)用的主要2個方向:隱私和可驗證計算,Aleo是隱私L1公鏈,同時兼具可編程性,像ZCash等雖然也是隱私公鏈,但是不具備可編程性。以太坊L2上的ZK-Rollup項目,屬于可驗證計算,我們之前的文章也分析過:重磅分析!為什么說FPGA或者ZK通用服務(wù)器在Aleo項目上機會是零?,在證明的需求量上完全不是一個級別。
再者對于隱私委托計算方案不僅可用于Aleo,也可用于其他需要生產(chǎn)證明的ZK項目,所以對于硬件的儲備和迭代是尤為重要的。