氧化皮質(zhì)脆,沒有延伸性,在機械作用下和熱加工作用下,很容易產(chǎn)生龜裂而脫離。氧化鐵和氧化亞鐵在水作用下生成氫氧化鐵,使得氧化皮膨脹而龜裂,甚至脫落。
在原有的氧化皮上,總是存在著深達基體的裂紋,當電解質(zhì)涌進裂紋后,鐵和氧化皮構(gòu)成原電池。氧化皮是陰極,鐵作為陽極而加速腐蝕,因此氧化皮的面積越大,鋼鐵基體的腐蝕速度越快,腐蝕越嚴重。
含Si量較高的鋼,由于鐵皮中氣孔直徑大,空冷時的裂紋容易在氧化鐵皮厚度中間停止,除鱗時裂紋與基底金屬相平等傳播,導致基底金屬側(cè)的氧化鐵皮易殘留下來,所以氧化鐵皮剝離性不好(如圖1)。由于氧化鐵皮易殘留,導致隨后的氧化過程中,F(xiàn)e2O3比例高,使氧化鐵皮呈紅色。含Si 0.2%以上的鋼,由于加熱時在氧化鐵皮與基底金屬界面產(chǎn)生層狀的Fe2SiO4,界面溫度在Fe2SiO4的凝固溫度1170℃以下時,鐵皮對基底的著力增強,剝離性更差,導致紅色更重。
對于Si≤0.05%的C-Mn鋼,氧化鐵皮中氣孔小,分布比較均勻,由空冷引起的熱應力使氧化鐵皮產(chǎn)生裂紋,低Si鋼氧化鐵皮中由于氣孔小,應力松弛緩小,裂紋就沿氣孔擴展到基底金屬界面。除鱗時,熱應力就在氧化鐵皮和基底金屬界面作為剪切力起作用,使氧化鐵皮從基義金屬上剝離開。
由于高溫時鐵皮剝離性好,在隨后的氧化過程中導致鐵皮中FeO比例較高,使鐵皮呈藍灰色。
對于邊部100mm以內(nèi)紅色相對重一些是由于板坯出爐后邊部冷速較快,造成邊部溫度比中部低,導致除鱗時FeO比中部殘留多,所以邊部紅色相對中部重一些。