合金鋼已有一百多年的歷史了。工業(yè)上較多地使用合金鋼材大約是在19世紀后半期。
1868年英國人馬希特(R.F.Mushet)發(fā)明了成分為2.5%Mn-7%W的自硬鋼,將切削速度提高到5米/分。
1870年在美國用鉻鋼(1.5~2.0%Cr)在密西西比河上建造了跨度為 158.5米的大橋;稍后,一些工業(yè)國家改用鎳鋼(3.5%Ni)建造大跨度的橋梁,或用于修造軍艦。
1901年在西歐出現(xiàn)了高碳鉻滾動軸承鋼。
1910年又發(fā)展出了18W-4Cr-1V型的高速工具鋼,進一步把切削速度提高到30米/分。
20世紀20年代以后,不銹鋼和耐熱鋼在這段期間問世了。
1920年德國人毛雷爾 (E.Maurer) 發(fā)明了18-8型不銹耐酸鋼,
1929年在美國出現(xiàn)了Fe-Cr-Al電阻絲。
1939年德國在動力工業(yè)開始使用奧氏體耐熱鋼。
第二次世界大戰(zhàn)以后至60年代,主要是發(fā)展高強度鋼和超高強度鋼的時代,由于航空工業(yè)和火箭技術(shù)發(fā)展的需要,出現(xiàn)了許多高強度鋼和超高強度鋼新鋼種,如沉淀硬化型高強度不銹鋼和各種低合金高強度鋼等是其代表性的鋼種。60年代以后,許多冶金新技術(shù),特別是爐外精煉技術(shù)被普遍采用,合金鋼開始向高純度、高精度和超低碳的方向發(fā)展,又出現(xiàn)了馬氏體時效鋼、超純鐵素體不銹鋼等新鋼種。
國際上使用的有上千個合金鋼鋼號,數(shù)萬個規(guī)格,合金鋼的產(chǎn)量約占鋼總產(chǎn)量的10%,是國民經(jīng)濟建設(shè)和國防建設(shè)大量使用的重要金屬材料。
20 世紀 70 年代以來, 世界范圍內(nèi)合金高強度鋼的發(fā)展進入了一個全新時期, 以控制軋制技術(shù)和微合金化的冶金學為基礎(chǔ), 形成了現(xiàn)代低合金高強度鋼即微合金化鋼的新概念。
進入 80 年代,一個涉及廣泛工業(yè)領(lǐng)域和專用材料門類的品種開發(fā),借助于冶金工藝技術(shù)方面的成就達到了頂峰。在鋼的化學成分-工藝-組織-性能的四位一體的關(guān)系中,次突出了鋼的組織和微觀精細結(jié)構(gòu)的主導地位,也表明低合金鋼的基礎(chǔ)研究已趨于成熟,以前所未有的新的概念進行合金設(shè)計。
合金元素對鋼熱處理的影響
1、對奧氏體化的影響——大多數(shù)合金元素(鎳、鈷除外)都減緩奧氏體化過程。所以在熱處理時就需要比碳鋼更高的加熱溫度和更長的保溫時間?!蓟锊灰朔纸?。
2、對奧氏體晶粒大小的影響——大多數(shù)合金元素有阻礙奧氏體晶粒長大的作用。但錳和硼卻相反,可以促進奧氏體晶粒長大,所以,除錳鋼外,合金鋼在加熱時不易過熱。這樣有利于在淬火后獲得細馬氏體;也有利于適當提高加熱溫度,使奧氏體中溶有更多的合金元素增加淬透性和提高鋼的力學性能。 [2]
3、合金元素對過奧氏體轉(zhuǎn)變的影響——除鈷外,所有合金元素都使C曲線右移,降低鋼的臨界冷卻速度,提高鋼的淬透性(如圖7-4)。有些合金元素還使C曲線的形狀發(fā)生改變。另外,大多數(shù)合金元素還使Ms點下降。
按合金元素的含量分
1)低合金鋼 合金元素總含量小于等于5%;
2)中合金鋼 合金元素總含量在5%~10%之間;
3)高合金鋼 合金元素總含量大于等于10%;
2、按合金元素的種類分
有鉻鋼、錳鋼、鉻錳鋼、鉻鎳鋼、鉻鎳鉬鋼、硅錳鉬釩鋼等。
合金鋼根據(jù)各種元素在鋼中形成碳化物的傾向,可分為三類:
①強碳化物形成元素,如釩、鈦、鈮、鋯等。
這類元素只要有足夠的碳,在適當?shù)臈l件下,就形成各自的碳化物;僅在缺碳或高溫的條件下,才以原子狀態(tài)進入固溶體中。
②碳化物形成元素,如錳、鉻、鎢、鉬等。這類元素一部分以原子狀態(tài)進入固溶體中,另一部分形成置換式合金滲碳體,如(Fe,Mn)3C、(Fe,Cr)3C等,如果含量超過一定限度(除錳以外),又將形成各自的碳化物,如(Fe,Cr)7C3、(Fe,W)6C等。
③ 不形成碳化物元素,如硅、鋁、銅、鎳、鈷等。這類元素一般以原子狀態(tài)存在于奧氏體、鐵素體等固溶體中。合金元素中一些比較活潑的元素,如鋁、錳、硅、鈦、鋯等,極易和鋼中的氧和氮化合,形成穩(wěn)定的氧化物和氮化物,一般以夾雜物的形態(tài)存在于鋼中。錳、鋯等元素也和硫形成硫化物夾雜。鋼中含有足夠數(shù)量的鎳、鈦、鋁、鉬等元素時能形成不同類型的金屬間化合物。有的合金元素如銅、鉛等,如果含量超過它在鋼中的溶解度,則以較純的金屬相存在。