并聯(lián)機構有兩個構成部分,分別是手腕和手臂。手臂活動區(qū)域對活動空間有很大的影響,而手腕是工具和主體的連接部分。與串聯(lián)機器人相比較,并聯(lián)機器人具有剛度大、結構穩(wěn)定、承載能力大、微動精度高、運動負荷小的優(yōu)點。在位置求解上,串聯(lián)機器人的正解容易,但反解十分困難;而并聯(lián)機器人則相反,其正解困難,反解卻非常容易。
控制系統(tǒng)的任務是根據(jù)機器人的作業(yè)指令以及從傳感器反饋回來的信號,支配機器人的執(zhí)行機構去完成規(guī)定的運動和功能。如果機器人不具備信息反饋特征,則為開環(huán)控制系統(tǒng);具備信息反饋特征,則為閉環(huán)控制系統(tǒng)。根據(jù)控制原理可分為程序控制系統(tǒng)、適應性控制系統(tǒng)和人工智能控制系統(tǒng)。根據(jù)控制運動的形式可分為點位控制和連續(xù)軌跡控制。
仿真分析
進行靜力學和動力學的仿真分析,對電機、減速器的選型校核,對本體零部件進行強度、剛度校核,降低本體重量,提高機器人工作效率,降低成本。對三維模型進行模態(tài)分析,計算出固有頻率,有助于進行共振抑制。
伺服
①快速響應,定位
伺服的響應時間直接影響到機器人的快速起停效果,影響機器人的工作效率和節(jié)拍。 [5]
②無傳感器方式實現(xiàn)彈性碰撞
性是衡量機器人性能的一個重要指標。加入力或力矩傳感器會使結構更復雜,成本更高,基于編碼器、電機電流耦合關系的無傳感彈性碰撞技術,可以在不改變本體結構,不增加本體成本的條件下,在一定程度上提高機器人的性。 [5]
③驅動多合一、驅控一體。
驅動多合一,多核CPU多軸驅控一體化集成技術,提高系統(tǒng)性能,降低驅動體積與成本。 [5]
④在線自適應抖振抑制
工業(yè)機器人懸臂結構極易在多軸聯(lián)動、重載及快速起停時引起抖動。機器人本體剛度要與電機伺服剛度參數(shù)相匹配,剛度過高,會造成振動,剛度過低會造成起停反應緩慢。機器人在不同的位置和姿態(tài),以及在不同的工裝負載下剛度都不一樣,很難通過提前設置伺服剛度值能滿足所有工況的需求。在線自適應抖振抑制技術,提出免參數(shù)調試的智能控制策略,同時兼顧剛度匹配、抖振抑制的需求,可以抑制機器人末端抖動,提高末端定位精度。