跟著鋰離子電池技術的不斷更新和開展,其質輕、高容、長壽命的長處逐步得到消費者的喜愛。其商場現(xiàn)已由手機擴展到相機、DVD、航模、玩具等多種領域。這些年,電動車電芯連接片在電動工具、備用電源、電動自行車、輕型電動車等大型設備上的運用日益遭到關注,而這些設備請求電池具有大容量、高功率條件。電動車電芯連接片能否滿意高、高功率、長壽命的根本請求,是很多專家學者討論的主要課題。
銦的提取工藝以萃取-電解法為主,這也是現(xiàn)今世界上銦生產(chǎn)的主流工藝技術。其原則工藝流程是:含銦原料→富集→化學溶解→凈化→萃取→反萃取→鋅(鋁)置換→海綿銦→電解精煉→精銦。
世界上銦產(chǎn)量的90%來自鉛鋅冶煉廠的副產(chǎn)物。銦的冶煉回收方法主要是從銅、鉛、鋅的冶煉浮渣、熔渣及陽極泥中通過富集加以回收。根據(jù)回收原料的來源及含銦量的差別,應用不同的提取工藝,達到配置和收益。常用的工藝技術有氧化造渣、金屬置換、電解富集、酸浸萃取、萃取電解、離子交換、電解精煉等。當前較為廣泛應用的是溶劑萃取法,它是一種分離提取工藝。離子交換法用于銦的回收,還未見工業(yè)化的報導。在從較難揮發(fā)的錫和銅內分離銦的過程中,銦多數(shù)集中在煙道灰和浮渣內。在揮發(fā)性的鋅和鎘中分離時,銦則富集于爐渣及濾渣內。
銦金屬可提高二硼化鎂超導臨界電流密度:
在超導體二硼化鎂里添加銦金屬粉末,大大提高了二硼化鎂超導臨界電流密度,向實用化又前進了一步。通過超導體的電流密度在超過某一數(shù)值時,超導體就失去了超導性,這一數(shù)值就是超導臨界電流密度。它是衡量超導體性能的一個重要指標。向二硼化鎂里添加銦金屬粉末,在2000攝氏度下熱處理后加工成為電線,其超導臨界電流密度比不添加銦提高了4倍,達到每平方厘米10萬安培。這是銦金屬滲透在二硼化鎂的晶粒之間,從而改善了它的結合性。
銦在地殼中的分布量比較小,又很分散。它的富礦還沒有發(fā)現(xiàn)過,只是在鋅和其他一些金屬礦中作為雜質存在,因此它被列入稀有金屬。
已知銦礦物有硫銦銅礦(CuInS2)、硫銦鐵礦(FeInS4)和水銦礦等。銦主要呈類質同象存在于鐵閃鋅礦、赤鐵礦、方鉛礦以及其他多金屬硫化物礦石中。此外,錫石、黑鎢礦、普通角閃石中也含銦。工業(yè)上,銦的主要來源為閃鋅礦(含銦0.0001~0.1%),在鉛鋅礦冶煉過程中作為副產(chǎn)品回收,錫冶煉也回收銦。
銦屬于稀散金屬,是稀缺資源。全球預估銦儲量僅5萬噸,其中可開采的占50%。由于未發(fā)現(xiàn)獨立銦礦,工業(yè)通過提純廢鋅、廢錫的方法生產(chǎn)金屬銦,回收率約為50-60%,這樣,真正能得到的銦只有1.5-1.6萬噸。