通過主觀意識借助實體或者虛擬表現(xiàn)構成客觀闡述形態(tài)結構的一種表達目的的物件(物件并不等于物體,不局限于實體與虛擬、不限于平面與立體)。
模型≠商品。任何物件定義為商品之前的研發(fā)過程中形態(tài)均為模型,當定義型號、規(guī)格并匹配相應價格的時候,模型將會以商品形式呈現(xiàn)出來。
從廣義上講:如果一件事物能隨著另一件事物的改變而改變,那么此事物就是另一件事物的模型。模型的作用就是表達不同概念的性質,一個概念可以使很多模型發(fā)生不同程度的改變,但只要很少模型就能表達出一個概念的性質,所以一個概念可以通過參考不同的模型從而改變性質的表達形式。
當模型與事物發(fā)生聯(lián)系時會產生一個具有性質的框架,此性質決定模型怎樣隨事物變化
數(shù)學模型
用數(shù)學語言描述的一類模型。數(shù)學模型可以是一個或一組代數(shù)方程、微分方程、差分方程、積分方程或統(tǒng)計學方程,也可以是它們的某種適當?shù)慕M合,通過這些方程定量地或定性地描述系統(tǒng)各變量之間的相互關系或因果關系。除了用方程描述的數(shù)學模型外,還有用其他數(shù)學工具,如代數(shù)、幾何、拓撲、數(shù)理邏輯等描述的模型。需要指出的是,數(shù)學模型描述的是系統(tǒng)的行為和特征而不是系統(tǒng)的實際結構。
用字母、數(shù)字和其他數(shù)學符號構成的等式或不等式,或用圖表、圖像、框圖、數(shù)理邏輯等來描述系統(tǒng)的特征及其內部聯(lián)系或與外界聯(lián)系的模型。它是真實系統(tǒng)的一種抽象。數(shù)學模型是研究和掌握系統(tǒng)運動規(guī)律的有力工具,它是分析、設計、預報或預測、控制實際系統(tǒng)的基礎。數(shù)學模型的種類很多,而且有多種不同的分類方法。
靜態(tài)和動態(tài)模型
靜態(tài)模型是指要描述的系統(tǒng)各量之間的關系是不隨時間的變化而變化的,一般都用代數(shù)方程來表達。動態(tài)模型是指描述系統(tǒng)各量之間隨時間變化而變化的規(guī)律的數(shù)學表達式,一般用微分方程或差分方程來表示。經典控制理論中常用的系統(tǒng)的傳遞函數(shù)也是動態(tài)模型,因為它是從描述系統(tǒng)的微分方程變換而來的(見拉普拉斯變換)。
線性和非線性模型
線性模型中各量之間的關系是線性的,可以應用疊加原理,即幾個不同的輸入量同時作用于系統(tǒng)的響應,等于幾個輸入量單獨作用的響應之和。線性模型簡單,應用廣泛。非線性模型中各量之間的關系不是線性的,不滿足疊加原理。在允許的情況下,非線性模型往往可以線性化為線性模型,方法是把非線性模型在工作點鄰域內展成泰勒級數(shù),保留一階項,略去高階項,就可得到近似的線性模型。