數(shù)學模型
用數(shù)學語言描述的一類模型。數(shù)學模型可以是一個或一組代數(shù)方程、微分方程、差分方程、積分方程或統(tǒng)計學方程,也可以是它們的某種適當?shù)慕M合,通過這些方程定量地或定性地描述系統(tǒng)各變量之間的相互關(guān)系或因果關(guān)系。除了用方程描述的數(shù)學模型外,還有用其他數(shù)學工具,如代數(shù)、幾何、拓撲、數(shù)理邏輯等描述的模型。需要指出的是,數(shù)學模型描述的是系統(tǒng)的行為和特征而不是系統(tǒng)的實際結(jié)構(gòu)。
數(shù)學模型是運用數(shù)理邏輯方法和數(shù)學語言建構(gòu)的科學或工程模型。
數(shù)學模型的歷史可以追溯到人類開始使用數(shù)字的時代。隨著人類使用數(shù)字,就不斷地建立各種數(shù)學模型,以解決各種各樣的實際問題。對于廣大的科學技術(shù)工作者對大學生的綜合素質(zhì)測評,對教師的工作業(yè)績的評定以及諸如訪友,采購等日?;顒樱伎梢越⒁粋€數(shù)學模型,確立一個方案。建立數(shù)學模型是溝通擺在面前的實際問題與數(shù)學工具之間聯(lián)系的一座必不可少的橋梁。
用字母、數(shù)字和其他數(shù)學符號構(gòu)成的等式或不等式,或用圖表、圖像、框圖、數(shù)理邏輯等來描述系統(tǒng)的特征及其內(nèi)部聯(lián)系或與外界聯(lián)系的模型。它是真實系統(tǒng)的一種抽象。數(shù)學模型是研究和掌握系統(tǒng)運動規(guī)律的有力工具,它是分析、設(shè)計、預報或預測、控制實際系統(tǒng)的基礎(chǔ)。數(shù)學模型的種類很多,而且有多種不同的分類方法。
靜態(tài)和動態(tài)模型
靜態(tài)模型是指要描述的系統(tǒng)各量之間的關(guān)系是不隨時間的變化而變化的,一般都用代數(shù)方程來表達。動態(tài)模型是指描述系統(tǒng)各量之間隨時間變化而變化的規(guī)律的數(shù)學表達式,一般用微分方程或差分方程來表示。經(jīng)典控制理論中常用的系統(tǒng)的傳遞函數(shù)也是動態(tài)模型,因為它是從描述系統(tǒng)的微分方程變換而來的(見拉普拉斯變換)。
線性和非線性模型
線性模型中各量之間的關(guān)系是線性的,可以應(yīng)用疊加原理,即幾個不同的輸入量同時作用于系統(tǒng)的響應(yīng),等于幾個輸入量單獨作用的響應(yīng)之和。線性模型簡單,應(yīng)用廣泛。非線性模型中各量之間的關(guān)系不是線性的,不滿足疊加原理。在允許的情況下,非線性模型往往可以線性化為線性模型,方法是把非線性模型在工作點鄰域內(nèi)展成泰勒級數(shù),保留一階項,略去高階項,就可得到近似的線性模型。