粗加工模具粗加工的主要目標是追求單位時間內的材料去除率,并為半精加工準備工件的幾何輪廓。在切削過程中因切削層金屬面積發(fā)生變化,導致刀具承受的載荷發(fā)生變化,使切削過程不穩(wěn)定,刀具磨損速度不均勻,加工表面質量下降。
開發(fā)的許多CAM軟件可通過以下措施保持切削條件恒定,從而獲得良好的加工質量。恒定的切削載荷。通過計算獲得恒定的切削層面積和材料去除率,使切削載荷與刀具磨損速率保持均衡,以提高刀具壽命和加工質量。避免突然改變刀具進給方向。避免將刀具埋入工件。如加工模具型腔時,應避免刀具垂直插入工件,而應采用傾斜下刀方式(常用傾斜角為2°~3°),采用螺旋式下刀以降低刀具載荷;加工模具型芯時,應盡量先從工件外部下刀然后水平切入工件。刀具切入、切出工件時應盡可能采用傾斜式(或圓弧式)切入、切出,避免垂直切入、切出。采用攀爬式切削(Climbcutting)可降低切削熱,減小刀具受力和加工硬化程度,提高加工質量。半精加工模具半精加工的主要目標是使工件輪廓形狀平整,表面精加工余量均勻,這對于工具鋼模具尤為重要,因為它將影響精加工時刀具切削層面積的變化及刀具載荷的變化,從而影響切削過程的穩(wěn)定性及精加工表面質量。粗加工是基于體積模型(Volumemodel),精加工則是基于面模型(Surfacemodel)。而以前開發(fā)的CAD/CAM系統(tǒng)對零件的幾何描述是不連續(xù)的,由于沒有描述粗加工后、精加工前加工模型的中間信息,故粗加工表面的剩余加工余量分布及剩余加工余量均是未知的。因此應對半精加工策略進行優(yōu)化以保證半精加工后工件表面具有均勻的剩余加工余量。
優(yōu)化過程包括:粗加工后輪廓的計算、剩余加工余量的計算、允許加工余量的確定、對剩余加工余量大于允許加工余量的型面分區(qū)(如凹槽、拐角等過渡半徑小于粗加工刀具半徑的區(qū)域)以及半精加工時刀心軌跡的計算等?,F(xiàn)有的模具高速加工CAD/CAM軟件大都具備剩余加工余量分析功能,并能根據(jù)剩余加工余量的大小及分布情況采用合理的半精加工策略。如OpenMind公司的HyperMill和HyperForm軟件提供了束狀銑削(Pencilmilling)和剩余銑削(Restmilling)等方法來清除粗加工后剩余加工余量較大的角落以保證后續(xù)工序均勻的加工余量。Pro/Engineer軟件的局部銑削(Localmilling)具有相似的功能,如局部銑削工序的剩余加工余量取值與粗加工相等,該工序只用一把小直徑 銑刀 來清除粗加工未切到的角落,然后再進行半精加工;如果取局部銑削工序的剩余加工余量值作為半精加工的剩余加工余量,則該工序不僅可清除粗加工未切到的角落,還可完成半精加工。
的發(fā)展是由外接計算機與數(shù)控機床通過RS-232C串行口直接連接,直接進行NC程序的快速,準確的傳輸,并且外接計算機可與多臺具有相同的或者不同控制系統(tǒng)的數(shù)控機床相連接,進行信息共享,并能管理多臺機床組成的數(shù)控工段內的生產過程中的信息,以減少生產準備,尤其是數(shù)控NC程序的準備時間。隨著CAD/CAM,集成管理軟件的成熟,以及對柔性制造系統(tǒng)的需求的增加,數(shù)控機床的使用,從單機使用到計算機集成管理是生產加工業(yè)技術發(fā)展的方向。